123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 |
- /*!
- * @file DHT.cpp
- *
- * @mainpage DHT series of low cost temperature/humidity sensors.
- *
- * @section intro_sec Introduction
- *
- * This is a library for DHT series of low cost temperature/humidity sensors.
- *
- * You must have Adafruit Unified Sensor Library library installed to use this
- * class.
- *
- * Adafruit invests time and resources providing this open source code,
- * please support Adafruit andopen-source hardware by purchasing products
- * from Adafruit!
- *
- * @section author Author
- *
- * Written by Adafruit Industries.
- *
- * @section license License
- *
- * MIT license, all text above must be included in any redistribution
- */
- #include "DHT.h"
- #define MIN_INTERVAL 2000 /**< min interval value */
- #define TIMEOUT \
- UINT32_MAX /**< Used programmatically for timeout. \
- Not a timeout duration. Type: uint32_t. */
- /*!
- * @brief Instantiates a new DHT class
- * @param pin
- * pin number that sensor is connected
- * @param type
- * type of sensor
- * @param count
- * number of sensors
- */
- DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
- (void)count; // Workaround to avoid compiler warning.
- _pin = pin;
- _type = type;
- #ifdef __AVR
- _bit = digitalPinToBitMask(pin);
- _port = digitalPinToPort(pin);
- #endif
- _maxcycles =
- microsecondsToClockCycles(1000); // 1 millisecond timeout for
- // reading pulses from DHT sensor.
- // Note that count is now ignored as the DHT reading algorithm adjusts itself
- // based on the speed of the processor.
- }
- /*!
- * @brief Setup sensor pins and set pull timings
- * @param usec
- * Optionally pass pull-up time (in microseconds) before DHT reading
- *starts. Default is 55 (see function declaration in DHT.h).
- */
- void DHT::begin(uint8_t usec) {
- // set up the pins!
- pinMode(_pin, INPUT_PULLUP);
- // Using this value makes sure that millis() - lastreadtime will be
- // >= MIN_INTERVAL right away. Note that this assignment wraps around,
- // but so will the subtraction.
- _lastreadtime = millis() - MIN_INTERVAL;
- DEBUG_PRINT("DHT max clock cycles: ");
- DEBUG_PRINTLN(_maxcycles, DEC);
- pullTime = usec;
- }
- /*!
- * @brief Read temperature
- * @param S
- * Scale. Boolean value:
- * - true = Fahrenheit
- * - false = Celcius
- * @param force
- * true if in force mode
- * @return Temperature value in selected scale
- */
- float DHT::readTemperature(bool S, bool force) {
- float f = NAN;
- if (read(force)) {
- switch (_type) {
- case DHT11:
- f = data[2];
- if (data[3] & 0x80) {
- f = -1 - f;
- }
- f += (data[3] & 0x0f) * 0.1;
- if (S) {
- f = convertCtoF(f);
- }
- break;
- case DHT12:
- f = data[2];
- f += (data[3] & 0x0f) * 0.1;
- if (data[2] & 0x80) {
- f *= -1;
- }
- if (S) {
- f = convertCtoF(f);
- }
- break;
- case DHT22:
- case DHT21:
- f = ((word)(data[2] & 0x7F)) << 8 | data[3];
- f *= 0.1;
- if (data[2] & 0x80) {
- f *= -1;
- }
- if (S) {
- f = convertCtoF(f);
- }
- break;
- }
- }
- return f;
- }
- /*!
- * @brief Converts Celcius to Fahrenheit
- * @param c
- * value in Celcius
- * @return float value in Fahrenheit
- */
- float DHT::convertCtoF(float c) { return c * 1.8 + 32; }
- /*!
- * @brief Converts Fahrenheit to Celcius
- * @param f
- * value in Fahrenheit
- * @return float value in Celcius
- */
- float DHT::convertFtoC(float f) { return (f - 32) * 0.55555; }
- /*!
- * @brief Read Humidity
- * @param force
- * force read mode
- * @return float value - humidity in percent
- */
- float DHT::readHumidity(bool force) {
- float f = NAN;
- if (read(force)) {
- switch (_type) {
- case DHT11:
- case DHT12:
- f = data[0] + data[1] * 0.1;
- break;
- case DHT22:
- case DHT21:
- f = ((word)data[0]) << 8 | data[1];
- f *= 0.1;
- break;
- }
- }
- return f;
- }
- /*!
- * @brief Compute Heat Index
- * Simplified version that reads temp and humidity from sensor
- * @param isFahrenheit
- * true if fahrenheit, false if celcius
- *(default true)
- * @return float heat index
- */
- float DHT::computeHeatIndex(bool isFahrenheit) {
- float hi = computeHeatIndex(readTemperature(isFahrenheit), readHumidity(),
- isFahrenheit);
- return hi;
- }
- /*!
- * @brief Compute Heat Index
- * Using both Rothfusz and Steadman's equations
- * (http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml)
- * @param temperature
- * temperature in selected scale
- * @param percentHumidity
- * humidity in percent
- * @param isFahrenheit
- * true if fahrenheit, false if celcius
- * @return float heat index
- */
- float DHT::computeHeatIndex(float temperature, float percentHumidity,
- bool isFahrenheit) {
- float hi;
- if (!isFahrenheit)
- temperature = convertCtoF(temperature);
- hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) +
- (percentHumidity * 0.094));
- if (hi > 79) {
- hi = -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity +
- -0.22475541 * temperature * percentHumidity +
- -0.00683783 * pow(temperature, 2) +
- -0.05481717 * pow(percentHumidity, 2) +
- 0.00122874 * pow(temperature, 2) * percentHumidity +
- 0.00085282 * temperature * pow(percentHumidity, 2) +
- -0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
- if ((percentHumidity < 13) && (temperature >= 80.0) &&
- (temperature <= 112.0))
- hi -= ((13.0 - percentHumidity) * 0.25) *
- sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
- else if ((percentHumidity > 85.0) && (temperature >= 80.0) &&
- (temperature <= 87.0))
- hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
- }
- return isFahrenheit ? hi : convertFtoC(hi);
- }
- /*!
- * @brief Read value from sensor or return last one from less than two
- *seconds.
- * @param force
- * true if using force mode
- * @return float value
- */
- bool DHT::read(bool force) {
- // Check if sensor was read less than two seconds ago and return early
- // to use last reading.
- uint32_t currenttime = millis();
- if (!force && ((currenttime - _lastreadtime) < MIN_INTERVAL)) {
- return _lastresult; // return last correct measurement
- }
- _lastreadtime = currenttime;
- // Reset 40 bits of received data to zero.
- data[0] = data[1] = data[2] = data[3] = data[4] = 0;
- #if defined(ESP8266)
- yield(); // Handle WiFi / reset software watchdog
- #endif
- // Send start signal. See DHT datasheet for full signal diagram:
- // http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
- // Go into high impedence state to let pull-up raise data line level and
- // start the reading process.
- pinMode(_pin, INPUT_PULLUP);
- delay(1);
- // First set data line low for a period according to sensor type
- pinMode(_pin, OUTPUT);
- digitalWrite(_pin, LOW);
- switch (_type) {
- case DHT22:
- case DHT21:
- delayMicroseconds(1100); // data sheet says "at least 1ms"
- break;
- case DHT11:
- default:
- delay(20); // data sheet says at least 18ms, 20ms just to be safe
- break;
- }
- uint32_t cycles[80];
- {
- // End the start signal by setting data line high for 40 microseconds.
- pinMode(_pin, INPUT_PULLUP);
- // Delay a moment to let sensor pull data line low.
- delayMicroseconds(pullTime);
- // Now start reading the data line to get the value from the DHT sensor.
- // Turn off interrupts temporarily because the next sections
- // are timing critical and we don't want any interruptions.
- InterruptLock lock;
- // First expect a low signal for ~80 microseconds followed by a high signal
- // for ~80 microseconds again.
- if (expectPulse(LOW) == TIMEOUT) {
- DEBUG_PRINTLN(F("DHT timeout waiting for start signal low pulse."));
- _lastresult = false;
- return _lastresult;
- }
- if (expectPulse(HIGH) == TIMEOUT) {
- DEBUG_PRINTLN(F("DHT timeout waiting for start signal high pulse."));
- _lastresult = false;
- return _lastresult;
- }
- // Now read the 40 bits sent by the sensor. Each bit is sent as a 50
- // microsecond low pulse followed by a variable length high pulse. If the
- // high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
- // then it's a 1. We measure the cycle count of the initial 50us low pulse
- // and use that to compare to the cycle count of the high pulse to determine
- // if the bit is a 0 (high state cycle count < low state cycle count), or a
- // 1 (high state cycle count > low state cycle count). Note that for speed
- // all the pulses are read into a array and then examined in a later step.
- for (int i = 0; i < 80; i += 2) {
- cycles[i] = expectPulse(LOW);
- cycles[i + 1] = expectPulse(HIGH);
- }
- } // Timing critical code is now complete.
- // Inspect pulses and determine which ones are 0 (high state cycle count < low
- // state cycle count), or 1 (high state cycle count > low state cycle count).
- for (int i = 0; i < 40; ++i) {
- uint32_t lowCycles = cycles[2 * i];
- uint32_t highCycles = cycles[2 * i + 1];
- if ((lowCycles == TIMEOUT) || (highCycles == TIMEOUT)) {
- DEBUG_PRINTLN(F("DHT timeout waiting for pulse."));
- _lastresult = false;
- return _lastresult;
- }
- data[i / 8] <<= 1;
- // Now compare the low and high cycle times to see if the bit is a 0 or 1.
- if (highCycles > lowCycles) {
- // High cycles are greater than 50us low cycle count, must be a 1.
- data[i / 8] |= 1;
- }
- // Else high cycles are less than (or equal to, a weird case) the 50us low
- // cycle count so this must be a zero. Nothing needs to be changed in the
- // stored data.
- }
- DEBUG_PRINTLN(F("Received from DHT:"));
- DEBUG_PRINT(data[0], HEX);
- DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[1], HEX);
- DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[2], HEX);
- DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[3], HEX);
- DEBUG_PRINT(F(", "));
- DEBUG_PRINT(data[4], HEX);
- DEBUG_PRINT(F(" =? "));
- DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
- // Check we read 40 bits and that the checksum matches.
- if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
- _lastresult = true;
- return _lastresult;
- } else {
- DEBUG_PRINTLN(F("DHT checksum failure!"));
- _lastresult = false;
- return _lastresult;
- }
- }
- // Expect the signal line to be at the specified level for a period of time and
- // return a count of loop cycles spent at that level (this cycle count can be
- // used to compare the relative time of two pulses). If more than a millisecond
- // ellapses without the level changing then the call fails with a 0 response.
- // This is adapted from Arduino's pulseInLong function (which is only available
- // in the very latest IDE versions):
- // https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
- uint32_t DHT::expectPulse(bool level) {
- // F_CPU is not be known at compile time on platforms such as STM32F103.
- // The preprocessor seems to evaluate it to zero in that case.
- #if (F_CPU > 16000000L) || (F_CPU == 0L)
- uint32_t count = 0;
- #else
- uint16_t count = 0; // To work fast enough on slower AVR boards
- #endif
- // On AVR platforms use direct GPIO port access as it's much faster and better
- // for catching pulses that are 10's of microseconds in length:
- #ifdef __AVR
- uint8_t portState = level ? _bit : 0;
- while ((*portInputRegister(_port) & _bit) == portState) {
- if (count++ >= _maxcycles) {
- return TIMEOUT; // Exceeded timeout, fail.
- }
- }
- // Otherwise fall back to using digitalRead (this seems to be necessary on
- // ESP8266 right now, perhaps bugs in direct port access functions?).
- #else
- while (digitalRead(_pin) == level) {
- if (count++ >= _maxcycles) {
- return TIMEOUT; // Exceeded timeout, fail.
- }
- }
- #endif
- return count;
- }
|